Opublikowano: 11 listopada, 2014

Machine Learning

W serwisie e-webinaria.pl znajduje się pełny zapis webinarium dotyczącego: BigData. Prezentujemy jego fragment.

Usługa Azure Machine Learning jest usługą platformy Azure i z punktu widzenia dewelopera, składa się z 3 części:
1. standardowego portalu administracyjnego Azure, który służy do zarządzania machine learning, poprzez tworzenie work spaces czyli obszarów roboczych,
2. narzędzia ML Studio – graficznego edytora przepływów,
3. ML API Service.
Usługa Azure integruje się z funkcjami języka R i Python, a także Azure Data Factory. Może również integrować przepływy danych z SQL Data Base, Hadoop, i źródłami dodatkowymi tzw. on premise. Z architektury tej wynika bogactwo zastosowań Azure: dla Data Scientist, dla klasycznego dewelopera oraz możliwość integracji danych z web serwisów. Najważniejszą cechą Azure jest ułatwienie dla użytkownika procesu machine learning.
Zapoznaj się z całością webinarium. UWAGA: Aby je obejrzeć należy być zarejestrowanym użytkownikiem. Jeżeli nie posiadacie Państwo konta w serwisie można je założyć.
Azure Machine Learning jest usługą płatną. Płatność za usługę Azure zależy od liczby godzin wykorzystanych na uruchamianie procesów w ML Studio i odwołań z API do gotowych modeli.
ML Studio posiada szereg funkcjonalności. Jest to aplikacja działająca w chmurze. Służy do tworzenia modeli i ich trenowania. Można do tego narzędzia ładować własne dane, można też korzystać z przykładowych danych, dzielić dane, pracować na meta danych. Cały proces w ML Studio kończy się stworzeniem wytrenowanego modelu, który możemy zapisać i wykorzystywać rozwiązaniu problemu. Można także porównywać użyteczność różnych modeli dla danego problemu. Stworzone modele nadają się automatycznie do użycia w web serwisach, poprzez które będziemy wykorzystywać stworzone modele do zadań praktycznych na danych rzeczywistych.
Podstawową kwestią w procesie Machine Learning są źródła danych. Można korzystać z własnych danych lokalnych, które załadujemy do chmury. Z uwagi na pracę z dużymi źródłami danych może być zastosowana usługa Hadoop lub Azure Storage. W wymienionych narzędziach Microsoft można dane zarówno czytać jak i zapisywać, a następnie wykorzystywać w późniejszym okresie do tworzenia modeli w usłudze Azure.
Część algorytmów znana jest użytkownikom, którzy korzystali wcześniej z SQL Servera. Inne, nowe algorytmy są bardzo nowoczesne a dodatkowo, , ponieważ jest to usługa działająca w chmurze, kolejne algorytmy będą stopniowo dodawane do usługi Azure ML. Algorytmy te występują w grupach: regresja, klasyfikacja i grupowanie. Występuje m.in. kilka odmian drzew decyzyjnych. W Azure można porównywać różne algorytmy ze sobą, co ułatwia Data Scientist tworzenie nowych modeli.
Usługa Azure Machine Learning ma tę zaletę, że nie wymaga samodzielnego programowania. Można budować modele wykorzystując gotowe algorytmy i dzięki temu w łatwy i szybki sposób tworzyć modele i wizualizować je w postaci tabel, wykresów lub nawet map. Szybkość budowania, nawet skomplikowanych, modeli w Azure ML silnie zależy od doświadczenia Data Scientist. Automatyzacja procesu tworzenia i korzystania z modeli w Microsoft Azure jest tak daleko posunięta, że może zająć czasami tylko kilkanaście minut, co pokazują demonstracje.

Po więcej informacji zapraszamy do serwisu e-webinaria.pl

Tags:




Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *

Wróć na górę ↑